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ABSTRACT

;'This paper deals with the structural and stability properties of the
averaging approximation scheme for linear retarded functional differential
equations. Both in the discrete- and in the continuous-time case the
structure of the approximating systems is shown to be analogous to the
structure of the underlying retarded equation. Moreover, it is shown that the
approximating systems are exponentially stable in a uniform sense if the

original system is asymptotically stable.
~
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SIGNIFICANCE AND EXPLANATION

Functional differential equations play an important role in a large
number of practical problems (wind tunnel control, ship stabilization, steel
mill, chemical engineering, population dynamics). They can be represented as
ordinary differential equations in infinite dimensional spaces. Approximation
methods are needed in order to solve problems like dynamic feedback
stabilization, optimal control or parameter identification. For some of these
problems Lyapunov stability properties of the approximating systema are of
considerable importance. These are studied in the present paper by means of
an analysis of some fundamental structural properties of the approximation

scheme.
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STRUCTURE AND STABILITY OF FINITE DIMENSIONAL APPROXIMATIONS
FOR FUNCTIONAL DIFFERENTIAL EQUATIONS

Dietmar Salamon

1. INTRODUCTION

The object of this paper is to present some new results on the averaging
approximation scheme for linear retarded functional differential equations (RFDE).

The averaging approximation scheme has been invented and studied by several Soviet
authors in the early sixties (see e.g. REPIN [18); further references and a detailed
review can be found in BANKS-BURNS (2]). A general convergence proof, a stability
analysis and applications to optimal control problems have been presented for the first
time by BANKS-BURNS [1],[2]. Related discrete-time approximations have been considered by
DELFOUR (6], REBER [17], ROSEN [19]. Recently, GIBSON (9] has used the averaging acheme
for approximating the solution of the algebraic Riccati equation aasociated with a
retarded system. However, there remained one open problem in the convergence proof in (9]
which has not yet been resolved. This is the question whether the approximating systems
are uniformly exponentially stable for sufficiently large N if the underlying RFDE is

stable. In [9] this has been stated as a conjecture without proof. We show in section

4.2 that this conjecture is in fact correct.

Another motivation for the present work comes from some recent developments in the
theory of retarded systems in the product space framework. One of these is the
introduction of so called structural operators for the state space description of RFDEs
which have made the linear theory much more elegant and efficient (see e.g. BERNIER-
MANITIUS (3}, MANITIUS (14], DELFOUR~MANITIUS (7]). They have led to a number of new
results in the control theory of RFDEs, namely on problems like completeness of

eigenfunctions, controllability, observability, and the linear quadratic optimal control

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is
based upon work supported by the National Science Poundation under Grant No. MCS-8210950.




problem. Another important development was an interpretation of the adjoint semigroup in
terms of the underlying RFDE. Extensions to neutral systems and further references can be
found in SALAMON [20].

The problem has not yet been congidered whether analogous regults can be developed
for finite dimensional approximations of RFDEs, in particular the averaging approximation
scheme. In this paper we fill this gap. It is shown that the approximating systems
satisfy analogous duality relations as the RFDE and certain structural matrices are
introduced which play an analogous role for the approximating systems aa the structural
operators do for the RFDE. Moreover, it is shown that these matrices actually converge to
the corresponding structural operators. These results have several important
consequences. For example, they lead to a uniform convergence result for the resolvent
operators and they are crucial for the proofs of the stability results in section 4.2.

In the preliminary section 2 we give a brief overview over some recent results in the
theory of linear retarded systems in the product space framework and describe the
averaging approximation scheme. Section 3 is devoted to the study of the structure of the
approximating systems which is shown to be analogous to the structure of the underlying
RFDE under sgeveral aspects. A number of convergence proofs is then given in section 4.1
and two stability results are proved in section 4.2. In the appendix (section 6) we prove
two functional analytic results which are frequently needed in section 4. In particular,

P

we give a quantitative estimate for the equivalence of L - stability and exponential

stability for strongly continuous semigroups.
2. LINEAR RETARDED SYSTEMS AND AVERAGING APPROXIMATION
2.1 LINEAR RETARDED SYSTEMS

We consider the linear retarded functional differential equation

x(t) = th , t 20, (2.1)
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where x(t) e R’ and xt is defined by xt(T) = x(t+1), ~h < T < 0, h > 0. 1

Correspondingiy L 1is a bounded linear functional from (= C[-h,O)ln] into w" given

by

D
Lé = [ an(u)edr), ¢ e,
~h

where n(T) is an nxn-matrix valued function of bounded variation. Without loss of
generality we can assume that n ia normalized which means that n(t) = 0 for

T2 0, n(t) = n(-h) for T € ~-h, and n(t) is left continuous for -h < 1 ¢ 0. At some

places we will assume that L 1is given by

q

0
: Lé = J AM-h) + [ A (1)4(1) ar, $ € C, 12.2)
. 3 3 01
j=0 =h
nxn .
. where 0 = h; < ... < hq = h and Aj erR ,3j=0, «.., q, as well as

2 nx
Am(-) eL [-h,O;lmm]. In this case n : R* R n is clearly given by

Geew

q
n(t) = - on(-w,o)(T) - jZ‘ ij(-w,-hj](f)

I B

0
- I‘ Agy(0) do, T €R.

pa

' where xI denotes the characteristic function of the interval I.

) It s well known that equation (2.1) admits a unique solution

2

x(+) & Ll

oc(-h,-;lln] ﬂw;(’)i[o,w:n"l for every initial condition of the form

x(0) = 00 . xi¥) = 01(1), ~h € 1 <O, (2.3)

where ¢ = (00,01) e 7 x L2 [-h,O;ln] = Mz. This solution depends continucusly on

x
¢ e Hz. The fundamental solution of (2.1) will be denoted by X(t) e .n n' t > ~h, and




corresponds to the initial condition X(0) = I, X(t) = 0, -h < 1 < O, It can also be

characterized by the Volterra integral equation

t
X(t) = I - [ n(a~t)X(s)ds
0
| -1 Ae
h and its laplace transform is given by A()) where A(\) = AI-L(e ), A e ¢, 1is the

characteristic matrix of (2.1).

Proofs of these facts can be found e.g. in HALE (10) or DELFOUR-MANITIUS (7].

2.2 SEMIGROUPS AND STRUCTURAL OPERATORS

In the theory of RFDEs - as well as of other types of integral and functional
differential equations -~ there are essentially two ways of introducing the state of the
system which are actually dual to each other. The state of system (2.1) in the
“classical” sense is the pair z(t) = (x(t),xt) e Mz vwhich completely describes the past
history of the solution. Its evolution determines the strongly continuous semigroup
S(t) of bounded linear operators on H2 defined by

S(E) = (x(t),x) € u2, sen too,

where x(t), t > -h, is the unique solution of (2.1) and (2.3). The infinitesimal

generator of S(t) 1is given by

2 .1 1,2 0 1
dom A ={deMm|p ew'", & =¢ (0)},
1 1
Ad = (Lé ,¢ ),
1,2 1,2 n
where W'’ denotes the Sobolev space W [-h,0,R ). In an analogous way we may

2
introduce the semigroup ST(t) e (M), £ » 0, with infinitesimal generator Ag

corregponding to the transposed RFDE




x(t) = L'x, . t > 0. (2.4)

The duality relation between (2.1) and (2.4) can be described by means of an

alternative (dual) state concept which is due to MILLER (15]. It can be motivated from
the fact that the solution of the RFDE (2.1) (t>0) can be derived from the initial

1
function (t<0) in two steps. First convert the initial function ¢ into a forcing

< term of sujtable length which determines the future behaviour of the solution. Secondly
determine the solution which corresponds to this forcing term. The dual state concept is
obtained by regarding this forcing term as the initial state of the system rather than the

solution segment. To be more precise, we rewrite equation (2.1) as

0
. 1
: x(e) = [ an(uxreen) + £1(-t),  x(0) = £°, (2.5)
. -t
."-
p 0 1 2
3 where the pair f = (f ,f ) e M is given by
R
1 0.0 _1 ° 1
3 £ =6, £(0) =) dn{1)é (1-0), -h € 0 < O, (2.6)
B -h

2
Now the initial state of (2.5) is given by f e M . Correspondingly the state at time

t 2 t 2 n
t >0 is the pair w(t) = (x{t),x ) €M where x €L [-h,0;R ] denotes the forcing

e SO

E~ term of the ghifted equation (2.5) and is given by

Al

Ky e g 1

3 x“(a) = [ an(Tix(t+1=0) + £ (0-t), ~h < g < O, (2.7
. o-t

' 2 -
i The evolution of this state (x(t),xt) e M is described by the semigroup ST(t) (see
e.g. BERNIER-MANITIUS [3] or SALAMON (20]).

Summarizing this situation, we have to deal with the foilowing four semigroups

S(t) ST(t)

- -
ST(t) s (t) .




The semigroups on the left correspond to the RFDE (2.1) and those on the right to the
transposed RFDE (2.4). On each side the upper semigroup describes the respective equation
within the “"classical” state concept (solution segments) and the one below within the dual
state concept (forcing terms). The diagonal relations are actually given by functional
analytic duality.

The relation between the two state concepts can be described by means of so called
structural operators. These have been introduced by BERNIER-MANITIUS (3], MANITIUS ({14},
DELFOUR-MANITIUS (7] and have turned ocut to be a very elegant and efficient concept in the
control theory of RFDEs. The operator F € L(Mz) maps every ¢ € Mz into the
corresponding initial state

Fo = £ en

2
of (2.5) which is given by (2.6). The operator G € L(M') maps every forcing term

2
fem into the corresponding solution segment
2
Gf = (x(h),xh) em

of (2.5) at time h. Thus Gf can be explicitly described as

t6£1° = (ce1 10y,

h
1
IGfl1(t) = X(h+t)f° + [ X(h+1-s)f (-8)ds, ~h € T < O.
0

Obviously, G is bijective as an operator from M2 into dom A and its inverse is given
by
-1,.0 1
[G °] = ° (—h)l

0
6 810y = ' (=0-n) - [ antt)1e (t-0-h), -n < o < O.

o




L4
for ¢ € dom A. A remarkable fact is that the adjoint operators F and G' play the

i . same role for the transposed equation (2.4) as the operators F and G do for the
original equation (2.1). Moreover, the following result has been proved by MANITIUS [(14]

d and DELFOUR-MANITIUS [7].

THEOREM 2.1

"
(1) s(h) = GF, ST(h) = FG.

(ii) FS(t) = S;(t)F, S(t)G = Gs;(t), t >0,

o~
-~
-
[
|

L *
If ¢ @domA, then F$ € dom A, and ALF$ = FAJ.

. [
If f e dom AT’ then GATf = AGE.

—

[N
<
o~

We close this section with a concrete representation of the resolvent operator. For this

2
sake we introduce for any A € ¢ the operators E, : t" + M° ana Ty Mz - M2 by

defining

[Exxlo = x, [Exx]‘(f) = eATx, x e ¢n,

0

(r,01° = 0, (1,81 (1) AL 2

¢ (0)do, ¢ e M.

n
-, —O

Bqf Sttt 0

Then the following result has been proved in MANITIUS ([13] and DELFOUR-MANITIUS (7].

PROPOSITION 2.2 Let det A(X) # 0. Then

Ar-m) ' = B A TS R o+ T
A X A

. -1 NS
(XI-AT) = FEXA( ) EX + TK .




e

k

GRSt

2.3 AVERAGING APPROXIMATION
In this section we briefly describe an approximation scheme for RFDEs which has been
studied by REPIN [18], BANKS-BURNS [1], (2], GIBSON [9) and many others. To this end we

N 2
introduce for every N € N the linear subspace X CM defined by
& 2.1 n _ 3 =1
={6eM|¢(T)=zjeR,-—Nh<1’<-Nh,j=1,...,N}

N 2 N
and denote the corresponding orthogonal projection by p : M + X . This subspace can

N+1 N N+1 2
be identified with Rn( ! by means of the embedding 11 RP( ) + M which
T,T N+1
associates with every z = (zg,...,zN) e Rn( ) the pair

[lNzlo =z4,

Wzt = z -dncrc -Ji'lh, 3= 1,.0.0,N.

+1
On ln(N ) we will always consider the induced inner product
N+t
< z,w >N = zTQNw, z, w € Rn( ),
where
I 0 « s e 0
-
- .
v o, §T. L
Qo = SR 0 (2.8)
. . . .
0 e 0 h
N

The corresponding vector and matrix norms will be denoted by I'IN. The adjoint operator

* +
N lN . HZ . Rn(N 1)

o= (1) is then given by

g bl
eall)

T T R S I I B LTI I M

-dy
N

3




N N
Obviously, the operators 1 and

satisfy

n{N+1}
= we consider thc differential equation

N NN
z{(t) =pnz (t) ,¢t >0,

where
N N N
A0 A1 te ) AN
I -I
N N -1 N
A'(Q)H;f‘f"‘ .... .
R S
and
N h
A, = lim [ntt + ;) ~n{t)l, 3 =0,...,N.

T4~jh/N

N N -1 N
In an analogous way we define the matrix AT =(Q ) H

N T

(Aj) for j = 0,1,...,N., Then the adjoint matrix (A
inner product < ¢,° )N is given by
i AN I
0 ..
N .
A -1 .
N, * N,-1 N.T N T _ ! S
(AT) Q) (HT) ’ (HT) : e

N) b4 AN
T o

(2.9)

(2.10)

(2.11)

(2.12)

N
where the Aj are replaced by
*

7 with respect to the

. (2.13)




We also congider the differential equation

*N N *N

w (t) = ()\T) wit) , t 20, (2.14)
n(N+1)
R . The following theorem has been proved in BANKS~-BURNS (2] and GIBSON (9].

THEOREM 2.3 let L : ( + Rn be given by (2.2). Then the following statements hold.

2
(1) For every ¢ €M we have ¢ = lim pNO .

N+oo
(1i) There exist constants M » 1, w > 0, such that

ah’
N A t
At wt T wt
1 1 1 <
e N < Me , le lN Me
for every t » 0 and every N € W
2 2
(iii) For all ¢ em ,  femMm
At e
*
ste)e = 1im e 2, S (t)f = lim Ne T aNe
N+ N+®

and the limits are uniform on every compact interval (0,TI].

PULL DISCRETIZATION

A fairly general and extensive study of full discretization methods for RFDEs can be
found in REBER [17) and ROSEN [19]. Since the aim of this work is to explore the special
structure of the averaging approximation scheme described above, we content ourselves with
the consideration of a simple one step Euler approximation for the ODE (2.10) which has
also been studied by DELFOUR (6] and FEBER (17] for time varying systems

Replacing the derivative in (2.10) by a difference quotient with step size h/N, we

get the differ ' -e equation

~10-

¢

re




N g LBLN N > 0
Zi+ N zZ,.o k ' (2.15)
f
+
in ‘n(N 1). Since
|
} h N h.N h N
I+y2 vk LN
h N 1 o
I+ ; A = . . - . N (2.16)
} . .
1" o

the n(N+1)-dimensional 1st order difference equation (2.15) js equivalent to the
n-dimensional (N+1)st order difference equation
N

N
N N N
(Xeyq = %) jzo AJ Koge k20, (2.17)

Tz

by means of the identification

. (2.18)

Equation (2.17) may be interpreted as a direct application of a 1-step difference approach
to the RFDE (2.1) with x: approximating x{(khMN). Finally, note that this
simplification of the difference equation (2.15) is only possible because of the
coincidence of the step size h/N for the time-discretization with the mesh size of the

N 2
spatial discretization in the subspace X C M .

3. THE STRUCTURE OF THE APPROXIMATING SYSTEMS
It is the goal of this gsection to analyse in detail the structure of the

approximating systems (2.10), (2.14) and (2.15) respectively (2.17). It is shown that

~11-




e

there is a strict analogy to the structure of the underlying RFDE (2.1) as it has been
described in section 2.2. 1In particular, there are certain structural matrices N and
GN playing the same role for the approximating systems as the operators F and G do

for the RFDE (2.1).

3.1 THE STRUCTURAL MATRICES
Starting from (2.17), we observe that there is another way of transforming this
(N+1)8t order difference equation into an equivalent 18t order equation. For this sake

let us rewrite (2.17) as

k
NN N N N N
b Reeq © %) jZO Ay Koy ¥ fppq r k20,
(3.1)
N N
xo to ,

where AN := 0, fN =0 for j >N and

3 3
N _ N
£0 ™ %o -
(3.2)
N
N N N
£ jzk Ry Kpegogr K= Toeees¥ s

The forcing term

N . Rn(N'H)

may be considered as the initial state of (3.1) since it contains all the information

N
which is needed for determining the future behaviour of its sgolution xk ,» k 0,

-12=-




N n(N+1)
Correspondingly the state at instant k € N is given by vk eR where

N N
Yi,0 - %Y
3
; (3.3)
+2-1
w, = b AN xN + fN L =1 N
k2 yut 3 Tk+t-1~4 x+2’ o0 ¢

N
Then it is easy to see that v satisfies the 1st order difference equation

N h N * N
L = (I + N (AT) ) W k >0, (3.4)

since
- -
h N h
+ - -
1 N Ao N I
N
PR L ° k.
I*N(AT) . . . *
. . I
N .
AN 0
¥ L =

Note that (3.4) can be regarded as a one step Euler approximation for the ODE (2.14).

We conclude that there are two state concepts for the difference equation (2.17),

PN

namely (2.18) and (3.2-3), both of which lead to a first order difference equation in

N+1
Rn( ), namely to (2.15) and (3.4). The relation between these two state concepts can

be described by certain structural matrices FN and G”. Before defining these matrices,

we introduce the concept of a fundamental solution for equation (3.1).

% DEFINITION 3.1 The fundamental matrix of equation (3.1) is the sequence

x: e "™, k > 0, defined by
¥
L N N N K N N
5 Ky %0 = 1 Ay X _y kem X =1 (3.5)

i=0

-13=




Remark 3.2

(1) By induction, it is easy to see that

N N
k+1 ¢ k €N, (3.6)

. x
-x =1 Xy A

3 (x
j=0

(i1) The solution of (3.1) is given by
f , k> 0, (3.7)

N h ¢ N
T % fo TN jZO *y k-3

Now we introduce the matrices

T 0 + ¢ 00 0
N N
0 N oM
N .
P - D . - L0 (3.8)
L] . L] .
o A o0°:.3%
1
and
N, . xN
* 0
-, K- . .. 0 . (3.9)
. . . .
N e . °
Xo 0 [
N N N N +1
Then it is easy to see that f = F z4 if zg e Rn(N ) is defined by (2.18) and

N n(N+1) . N
f @R is the forcing term of (3.1) defined by (3.2). Moreover, if xk, k > 0,
N n(N+1}
is the solution of (3.1) and zy e R is defined by (2.18), then it follows from

N N _N
remark 3.2 that zZg Gf . Making use of these facts, one can easily establish the

following result which is strictly analogous to theorem 2.1. The proof is left to the

reader.




e

PROPOSITION 3.3

*
W @+ 2aMYN oMY, e 2t - et

——— N

N N N -
AN = Mol

(1) Fa'- (A:)'F“

N o)’ N aM e
N

(114) Fett=e T M, P %Y g% T, oo
9.00'0 I 0 o . . l.O
] . N N . . N
) =1 -21 . A

TN R BRI 2 BRI
N N s T
b1 o-¥r1 0t o Ay Ay

We conclude that, for any solution zN(t) of (2.10), the function v“(t) - FN:“(t)
satisfies (2.14) and, conversely, for any solution vN(t) of (2.14), the function

zN(t) = GNwN(t) satisfies (2.10),

3.2 SPECTRAL THEORY

in this section we give a brief overview over some spectral properties of a¥

and
L
(A:) which are analogous to wellknown results in the theory of RFDEs. In particular,
we will see that the rational complex nxn-matrix valued function
N N N N N, N 3 N
= - = m—n——— - - .1
A (A) = A - L (A), L (A) ) A A E g (3.10)
3=0
plays precisely the same role for the approximating systems as the characteristic matrix

A(X) does for the underlying RFDE (2.1). Moreover, we introduce the matrices

[
N
N+Ah
52 - E e tn(N+1)xn (3.11)
N N
(N+Ah) 1 J

-15=-




and
) {. 0 0 * o @ 0 ‘1
. N . .
- NaB It
N_h . e . . . n{N+1)xn(N+1)
E = . . 0 e ¢ (3.12)
" NN e _ N
R TR R N+ T
i L :
for A e¢, A £ ~ N/h.
n(N+1) N
LEMMA 3.4 Let Aed, A\ ¥ -N/h, and z,w e ¢ be given. Then (AI-A )z = w if and
only if
N N
i z = Exzo + wa (3.13)
and
AN(X)zo = (E';)TQNFNw. (3.14)

N N N N
PROOF Clearly (AI - A )z =w if and only 1f (AQ =-H )z = Qw or equivalently

N
N
) Xzo- Z AjszHO, (3.13)
'}" j-o
A N h
- zj-N*Xh ij*zj-‘l]' j=1,...,N. (3.16)

Equation (3.16) is equivalent to

h N .V
Zy * n ! Soan) Yyeq—ur 37 TeeeeNy
va=1q

-3 - N . j
2, ® Gon)

-l6-




#nd hence to (3.13). If this is satisfied, then (3.15) is equivalent to

N
N - AN - N _h g N v
8 M)z Az, - Az I Al e, L (—=) wj’1_v]

0 "% T L T T N+Ah

N
-w+£’2(

0

= (z'; )TQNFNw. L

Note that the above lemma is strictly analogous to a well known result in the theory of
RFDEs (see e.g. HALE {10}, DELFOUR-MANITIUS {7]). It has several important consequences
which are summarized in the proposition below and can be proved straight forward.
Statement (i) can be found in BANKS~-BURNS [2]). Statement (iv) is the analogon of

proposition 2.2.

PROPOSITION 3.5

(1) Let Aed¢, A b -N/h, then A€ o(A") if and only if det AV(A) = o.
(11) A = -N/h e 0(AY) if and only if det :\‘: - o.

N * N N
(111) o((AD) ) = o(AT) = o(A).

(49) If Ak -N/h and det 8 (A) # 0, then

(XI-AN)-1 - NAN(”-1 (BN)TQNFN . 'r“,
A A A
N.* -1 NNN, =1, NTN N.T
(AI-(AT) ) =F EAA ) (EA) o + ('rx) .

REMARK 3.6 A solution x(t) of the RFDE (2.1) is said to be small if it vanishes after
some finite time T (HENRY [11]). If L : * Rn is given by (2.2) and if A°1(') 0,

then there exist nonzero small solutions of (2.1) if and only if det Aq = 0 (MANITIUS




- ApHen

R}

[t4]). Now note that for sufficiently large N this means that det Aq = 0 and hence
“N/h e G(AN) (proposition 3.5 (ii)). This indicates that the generalized eigenmodes of
(2.10) respectively (2.14) corresponding to the eigenvalue ) = =N/h play the role of
the small solutions in the approximating systems. Moreover, note that the solutions of
N

the difference equation (2.15) starting with generalized eigenvectors of A

corresponding to A = -N/h are precisely those solutions which vanish after a finite time,

4. CONVERGENCE AND STABILITY

Having introduced a number of operators for the approximating systems which are
analogous to well known operators in the theory of RFDEs, we may pose the question, if -
and in what sense - these operators converge. This problem will be considered in the next

section.

4.1 CONVERGENCE

We begin with some preliminary facts,

REMARK 4.1

N nxn
(i) It is easy to see that the function n : R + R defined by

-1
n"(t) = lim n(t), 5;— h<rt« gh , k ez,
Ttkh/N
satisfies the inequality

0

N h
[ laco - aT(nlar < L var(n) . 4.1)
~h

N
(i{) For every A e ¢, A ¥ -N/h, let us define the function e, : {-h,0) » ¢ by

N
N+Xh

N Jo_4 _ i . N
ex(T) ( Y7, N h<TX( re h, 3 0,...,N.
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Then it is well known that the limit

A
lim sup |e T e:(t)l =0 (4.2)
N+e -h<1<0

exiats uniformly on bounded subsets of the complex plane.

N
The following convergence result for A (A) has been shown by BANKS and BURNS ({2].

For completeness, we present an alternative and simplified proof.

LEMMA 4.2

(1) AN(X) converges to A(}) uniformly on every bounded subset of the complex plane.

N
; >
(ii) For every a > 0 there exists a constant . 0 such that |[L (X)] < <, for every
NewW with N> ah and every A € ¢ with Re A > -a.
PROOF Note that
0
h

0
Le*") = f e Tan(t) = —n(-me M - / n(rrerar
-h -h

and, by (3.10) and (2.12),

N
oo = T [V By - oV dm) GBe?

)
j=0 N+Ah
N CHCI S S P s iy
= -0 (=h) () v n " N
N 0 N N
= - n(-h) e, (-h) - A [ n(n e, (1) ar .
=h

Thus statement (i) follows immediately from remark 4.1. Statement (ii) follows from

N
N=-ah

N
(3.10) with c_ = VAR(n) sup {( )IN > an} < =, -
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For the next result we need the space
L.d L]
M =Rr"x L (-n,0;¢")

0 1 @
endowed with the norm ¢l _ = max {161, 19 1 u“) for ¢e M.

E M L

g THEOREM 4.3 The limits

3 lim IE, - lNEl:l w =0 = lim T, - 1"’1";1'"! -
N+w L™, M) N L, M)

exist uniformly on bounded subsgets of the compiex plane.

PROOF The statement on EX is an immediate consequence of remark 4.1 (ii), since

lNE:x = (x,e:(-)x) e M. for x € ¢n, New and A e¢, X £ N/,

2
In order to prove the second part of the theorem, let us first define e(A,T) €M

by

() , -h < agc<T,

e(x,t)o =0, e(l,t)1(o) ¢ X(t-0)
e , T€0<0,

for A e¢ and -h < t < O, Then
1 N N
(r,p ) (1) = < eh,1), p® > = <pe,T) 0> .

for all ¢ e Mz, Ae¢, NeWw and T € [~-h,0]. Moreover, the closure of the set

2
{e(x,t) | IA| € c, -h € 1 € 0} in M is compact and thus pN converges uniformly on
2
this set. Hence TxpN converges to TX in L(M",M ) uniformly on bounded subsets of
the complex plane.

Secondly, note that

i
0
NNt .h NV - N N_,1,_ ih _
(v'ryz) (1) = 4 V§1 wOn Zie1-v _ji/N e (@)t z] (- 10 -0) do
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and hence

FRYIRES
< 1ren e

. -1 -
y for Nh‘!(

1
(011

is equicontinuous

- oMt )

0
1 - mpe) - By e f et

o_ N
-5h/N A

~1
ji'- h, §J=1,...,N. Thus the statement of the theorem follows from

remark 4.1 (i1) together with the fact that the set

2

N < c, & @M%, 162 ¢ 1}

for c < =,

2

THEOREM 4.4 For every é € M

Fe = lim 1"

N

PROOF We prove this result in 3 steps.

INF and FNwN .

step 1 (x'Pe],

N N
[lFQIj--;

N_N N
[rwolj--h

P,

= [P“'NOIO « ¢ and for § = 1,....N

A
[ nedh (o' - o ] ar
-h

h/N
[ % (00 - ¢l ] &
=h

Proof Let us define O‘(t) : =0 for T € (-h,0}.
Aty
N N N 0 1
rrel, = f [ dn(t)$ (1-0) do
dy h

N

@110 - B -0yt a0

The first step is a formula for the operators

Then




e

Py

and

0'(0) do

0 '"%h
/

| an(v)

0
~-Tnem ¢ (o) a0 -8 o [olaedn - o (el )

-h+j§1h -h
N 1) - ' (eh
I VI | (6 (t) - ¢ (1 3] ar
-h
hA .
_X A 1 - ol (b
n n(t-gh) [ ¢ty - ¢ (1 N)] art
h .
N _ LIPURES I
-- 0 _}J’ ne=dn) [o7ctr-9 (2 0] art

N
N_N N
L RO vz A, Ol
j
N 'v;'h
-0 / [ﬁN(r-%’h) - nN(T-';'h)] o' (1) ar
V=3 _voier
N
N 0 N j-1 N ) 1
== ] - - 0t -3 ] ) ar
hol N N
hA .
- - X N o_d 1 VR P}
=-5 1 onadmleTco - -] ar

for j

Step 2

Proof

= 1,...,N. This proves step 1.

IPNIN < sup {1, VAR(n)} V¥ N e m.

By the well known convolution inequality, we have
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N
<[ varm)? ¥ gz,?
g1 )
and hence
N
N 2 2 . h N 2
L N S e R 21,1
=
N
2 2
<lzgl® o+ [VAR(n)]2 b DEEN
N 3
i=1
< [max {1, VAR(n)}]zlzli
1
for z e ln(N* ) and N € W. This proves step 2.

N N N 2
Fé = Lim t F v ¢ véem,

Né+xm

Step 3

1

Proof let us first assume that ¢
1

é (0) = 0.

step 1 and (4.1) that

N N N
| (» NIj [F'n OIjI

L

1
Moreover let us define ¢ (1) =0 for T > 0,

is continuously differentiable and that

Then it follows from

h/N . .
1
a1 [ (V) - a2 B e - ey ] and
- N N ' h

[e]
< [ Yt - ) ar
-h ~h<T<h /N

h :1
<y VAR(M) tei

T
N .1
sup | [ & (o) do|

T-h/N




and hence

tFp - lNFNnNoI

< tEd - piFet + tnlse - Falgn

N
<1rg - pUFel + B[ T (aVre1, - (¢MeNey 17]Y2
T 3 i
N h2 (3]
< IF¢ - p Fol + 372 VAR(n) 14 0.
N

2
For any ¢ € M the statement follows from the Banach-Steinhaus theorem and step 2. This

proves the theorem. ]
Combining the above convergence results with the concrete representation of the resolvent
operators given in proposition 2.2 and proposition 3.5, we obtain the following result.

The proof is a straight forward application of lemma 6.1 and will be omitted.

COROLLARY 4.5 The limits

1m 1-0)"" - Norah N R r
N+ LM, M)
* -1 . -
vm taz-an " - Nar-aht TN =0
T T 2
N+ L(MT)

exist uniformly on those bounded subsets of the complex plane which are uniformly bounded

away from the zeros of det A()),

THEOREM 4.6

1im 16 - VG Ny

N+m LM, M)

it
(=]
.




PROOF We establish this result in three steps.

N
Step 1 LlLet xj, 3 2 0, be given by (3.5) and let us define
N N i +1
X(e) = Xy, Incec 1;— he 3 =0,1,2,... .

Then XN(t) converges to X(t) uniformly on every compact interval (0,T],

Proof For every k €N

k-1
N N
SRR IR LUSTRE
V=)
k-1 v

¥ omg gm0 V733
k=1 k=1
-14»3— v 1 A:_ X
3=0 wmy V733
h XS N 1k N
=1-g 1 0y n) Xy
=0
kh /N
=1 - [ nVe-f2y xMe) as
s N

3 k+1
and hence for Eh‘t(Th

xte) - Ne) = x(e) - x(ﬁn)

KhoN

o [ (WNaemRy - oneERy] x(s)as
4]
kh AN

+ nN(s-:h)[xN(s) - X(s)]ds.
0

Thus the degired convergence result followa from Gronwall's lemma.
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o

ln(N“)

Step 2 Let z e and j e {1,...,N}. Then

h
[lNGNzlo = KN(h)z0 + ] XN(s)[lNz]1(e-h)ds,
0

h .
+ f XN(s)[lNz]1(s—h+Jn)ds, -4 h<t <~ bl h.
0 N N N

[\“GNzII(r) = xN(hH)z0

-1
Proof If -~ 3 h<Tt <=~ J;— h, then

N-§=1
NN 1 N h N
07672} (1) = Xy szg + zzo Xe Zy -t

L+1

N-j=1 N , .

= Mnnyz [ e 0¥ el as

=N

N

n .
= x"(hfr)zo + [ Ny [1":11(s-h+§h) as.
0

NN O
In the case j = 0 this equation leads to the desired expression for [1 G x] .

N_N
Step 3 1lim G -1 G an = 0,

N Lim? m™y

1 1
Proof First note that the functions [Gf] e C, £ e M, Ifl < 1, are equicontinuous

since the canonical embedding of w1’2 into ( is a compact operator.

(N+1
Rn ). Then, by step 2,

Now let z @
[G\Nz - lNGNz]0

h
= [xmxMm ]z + [ [x0e) - xNe)] 11V isn) as
0

' =1
and for - j he<rT<- 1;— he 321, .., N,
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[G\Nz - 1NGNz]‘(T)

= e - @ N2+ [xnedt - Mtz

h
+ ] [xts) - XN(s)] [lNz]1(n+gh-h)ds.
0

By step 1 and the equicontinuity mentioned above, this implies

lim IGlN - lNGN| = 0,

Now RPN =y

o
Moreover, note that the operator G : M + M is compact. So is the extended adjoint

. ® * 2
operator G : (M) + M ., By lemma 6.1, this implies

N * N *
l1im 1G - Gp 1 2 o T lm G -pG 1 we 2 0.
N+o LM™,M )  Ne= L) M%)

Hence the statement of the theorem follows from the inequality

16 - NN . <16 -cph I TR ! . -

LmZ,u™) L, u™) Lrt VD) oy

2
let f &M be given and let x(t), t » 0, be the corresponding solution of (2.5).

N
Moreover, let x ft), t ¢ O, be defined by

k

N N k+1
x(t)-ﬁ(,;;h<c<-;—h.k>0,

where x:, k » 0, 1is the unique solution of (3.1) corresponding to

+1
f" = w“f e .n(N ). Then the previous theorem shows that

1im sup Ix(t) - xN(t)l =0
N+o (0,T] ¢
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and moreover that this convergence is uniform for bounded f € M . This has also been

proved by REBER (17, theorem 7.5) under the condition that L : C » Rn is given by (2.2).

N* 2
(t) e (M), £t >0, by

N 2
Let us now introduce the operator families S (t) e L(mM'), S

N r h Nijk N N* N h , N %k N
= -— = + -
sty = U1+ oA e, 5 (e v 1 n(AT)]n,
(4.3)
k k+1
Fet <R k=002,

Then the following result is a direct consequence of theorem 4.4 and theorem 4.6 together

with the factorization results (theorem 2.1 (i) and proposition 3.3 (1)).

COROLLARY 4.7

(i) For all ¢ e M2, fe M2

* *
S(t)é = 1im S(£)9, SO = lim s, (0)f
N+ N+

and the convergence is uniform on every compact interval (0,T].

(i) For every k € N

N ' - N*
lim IS(kh) =~ S (kh)1 2 e lim ST(kh) - ST (kh)1 2 0.

Neo LM™, M) N-+o (M)

PROOF It only remains to note ~ for the proof of statement (ii) - that, by lemma 6.1,

lim 1 5(h) - GiNFMe ™ s m
N+ Lms, M)

L *
= 1im te'e - NEH TR = 0. -

Y 4 2
N LMy M)
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Statement (ii) of the above result is apparently new. The strong convergence of statement
(1) has been stated without proof by DELFOUR (6]. The strong convergence of SN(t) has

been shown by REBER [17] and ROSEN [19].

4.2 UNIFORM STABILITY
It is a simple consequence of corollary 4.7 that the discrete time systems (2.15) and
(3.4) are stable in a uniform gense if the underlying RFDE (2.1) is exponentially

stable. More precisely, we have the following result,

THEOREM 4.8 Let w < 0 and suppose that det A(X) ¢ 0 for every A € ¢ with

Re X » w. Then there exists an No @€ N and a constant Y > 0 such that

h N X wkh/N
W + SAD L < Ye

for every N 2 No.

PROOF It follows from a well known result in semigroup theory that there exists a

wk h
0
ko e N such that ls(koh)l 2 < e . By corollary 4.7 (ii), this implies the
L(M7)
existence of an No e N such “hat
k N wk N
h N0 0
o+ oA IN<e P NN

Moreover, it follows from corollary 4.7 (i), that

-wk _h
yi=me 0 aup (102 ¢£n")‘l L =0, ..., kN1, NE W} < =,

Nl 0

We conclude that the following inequality holds for N > No and k = VkoN + L with

vew and t e (o, ..., koN-1}




P

k N
h Nk h N ¢ h N 0 v
+ = < = =
I(r N A7) N 11 + N A) 'NI(I + N A) 1
wkoh kaoh
< Ye e
wi{vk +1/N)h
0
< Ye
- Yewkh/N ]

It follows easily from lemma 4.2 that the stability of the RFDE (2.1) also implies
the stability of the approximating continuous-time systems (2.10) and (2.14) if N ig
sufficiently large (the precise arguments are given in the proof of theorem 4.9 below).
However, a uniform estimate in the spirit of theorem 4.8 has not yet been proved in the
literature on these approximation schemes. It has been stated as a conjecture by GIBSON
[9] and provides - in that paper - a crucial step in the convergence proof for the
solutions of the algebraic Riccati equation. REPIN [18] also claims the uniform stability
of the approximating systems {(2.10), however, his arguments are extremely unclear and it
gseems almost impossible to convert them into a rigorous proof. The following theorem
closes this important gap in the approximation theory of RFDEs and may be considered as
the main result of this paper.

~

THEOREM 4.9 Let L : ( » Rn be given by (2.2) and let the RFDE (2.1) be exponentially

stable. Then the approximating systems (2.10) and (2.14) are uniformly exponentially

stable for sufficiently large N. This means that there exists an No e W and constants

€ >0, Yy 21 sguch that

for every t > 0 and every N > NO.

-30~




N.
PROOF PFirst note that the statement on (AT) follows from that on A“. Secondly, it

follows from theorem 6.2 and the exponential estimates in theorem 2.3 (ii) that it is

enough to show that there exists an N _ e N and a constant ¢ > 0 such that

0
- N 2
[ et T2 ar ¢ chin? (4.3)
N N
0
n(N+1)
for every z € R and every N > N We will prove this in 5 steps.

0

Step 1 There exisats an No @ M such that det A“(A) $ 0 for every A e ¢ with

Re A > 0 and every N > N

0
N

Proof By lemma 4.2(ii), the complex function det A (A) cannot have a zero in the closed

right halfplane outside the digc of radius VAR(N) centered at the origin. Inside this

N

disc the nonexistence of unstable eigenvalues of A follows from lemma 4.2(4i) if N is

sufficiently large.

Step 2 For N € N let us introduce the matrix

1 . NxN

Then there exist constants co > 0, Yo » 1 such that

< y.e Vt>0 VNeEeN

T N
Proof PFirst of all it is easy to see that x aNx €0 for every x € R and every

NeBmN Hence it follows from a well known result in semigroup theory that
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N
at
< . .
le |NxN 1 Vt>0 vyNnenm (4.4)

Moreover
- , ] -}
Nt/h .
N 3
-=t 11 . .
a t h 4 . J
e = e . . .
. . .
N N-’ .
(Nt/h) . Nt/h 4
L (N=1)1 11
-
and hence
N-1
le‘Ntl ) il (N_t_)k e-Nt/h
NxN k! h
k=0

! for every t > 0 and every N e N Since

[ ke ™M ar = )1 (nmy®*?,
0

this implies

z |
"
>

Together with (4.4) this estimate proves the statement of step 2 (theorem 6.2, p = 1),

Y More precisely, eo > 0 may be chosen to be any constant less than 1/h.
3 n(N+1)
3 Step 3 For every z € R and every N € W
x

L ]YZ
: f l'I'N 20 dw ¢ -9 lzlz.

iw N
- 0
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Proof First note that

N
N+Ah
SR N
(XIN a ) - : .
(NN ‘N
N+ih N+Ah
and hence
0 0
N
T, = . (4.5)

N =
0 (XIN-A) o

+1
Now let z e Rn(“ ) be given. Then, by gtep 2, the function
Z4
- a“t R N
z (t)=[e®* o1 ] : eg" , t>o0,

is square integrable on the interval [0,®) and its Fourier transform

z0iw) = == [ 7Y o(e) ar = = [tor-a")"" @ 1 ] z(0)
/x o V2x n
satisfies 12z} _— 1z} 2 N, Hence if follows from equation (4.5) angd
L™ (~=,o3¢ ] L (0,o;R ]
step 2 that
7 N 2 n 7 N_-1 -
[ o] 218 aw =2 [ [(({0I -a ) W I_] 2(0)] aw
SRS il NS N n &N

o

2nh ! n 2

= o= lz(iw) | dw
N — ¢nN




L]
27h - 2
N | 1z(e)] . at

0 R
Lo ~2€. .t - 2

2% 0
¢ 2th | Yze at lz(0)|
N 0 0 RnN

<

This proves step 3.

Step 4 There exists a constant ¢ > 0 such that the following inequality holds for every

Rn(N*'l)

z e and every N > No

o
f o™ Te? ae < anetinl,

-

Proof Recall that

N
iw

N -1 N N -1 N T NN
(iwI-A ) EiwA {iw) (Eiw)QF + T, , weR,
(proposition 3.5). By step 3, it remains to establish the desired inequality for the
firgt term on the right hand side of this equation. Moreover, it follows from theorem 4.4
that the operators M are uniformly bounded and it is easy to see that the operators
N N,.* N.T N
!X and (ET) = (Ex) Q are uniformly bounded on the imaginary axis. Thus it remains

-1

to prove the desired estimate for the term AN(iw) . But for |w| > VAR (n) it follows

from lemma 4.2 (ii) that

€0
A 0™ = 17 o™ Nk

1
‘ e ————————————— .
w| ~ ¥
=0 |wl AR(N)

~34~
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This inequality, together with lemma 4.2 sghows that

sup | IAN(iw)-'lzdw < ®,

>
N'No -

This proves atep 4.

+
Step 5 For every z @ Rn(N " and every N » No
- N
! |eA tzl2 dat < czlzlzn
N N
0
} N#1) N
i Proof Llet z € .n( and z(t) = eA tz for ¢t >0 and N > N_, Then z(t) is

]
square integrable on (0,®) and its Fourier transform is given by

- 1/

-1/2 N -1
z(lw) = (2%) (LwI-pn ) . By the Fourier-Plancherel theorem and step 4, we obtain

- N )
[ et a2 ae = o7 [ naera™) 22 aw < P2
N N N
3} -
This proves step 5 and the statement of the theorem. »

REMARK 4.10

The uniform exponential decay rate -€ for the approximating systems {2.10), {(2.14) which
has been found in the proof of theorem 4.9 is always larger than =-1/h. The question
remains open Af one can find a uniform exponential bound for the approximating systems

with the exponential decay rate w, + € where w, = sup {Re AldetA(A) = 0} and € > 0

n
can be chosen arbitrarily small. It is also an open problem if the operators lNcA tl"
converge to the (compact) operators S(t) € L(Hz) in the un{form operator topology if

t > h. 1€ this could be shown, then the solution to the uniform stability problem

mentioned ahove would be an immediate consequence.
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5. CONCLUSIONS

The present paper studies in detail certain finite dimensional approximations for
linear retarded systems, namely the averaging approximation scheme, both a continuous -
and a discrete-time version as well as the relation between these two. It turns out that
these finite dimensional approximations show - under several aspects - precisely the same
structure as the underlying RFDE. In particular, the duality relations are of the same
type and there are certain structural operators which play an important role for the
description of the approximating systems and are analogous to those which have recently
been introduced by BERNIER-MANITIUS [3], MANITIUS [14), DELFOUR-MANITIUS (7] for the study
of RFDEs. Moreover, it is shown that these operators actually converge to the
corregponding operators in the theory of retarded systems. One of these convergence
results, namely theorem 4.6, is only a slight extension of a corresponding result by REBER
(17, theorem 7.5].

Based on this detailed analysis of the structure of the approximating systems, it is
shown that both the discrete- and the continuous-time approximations are stable in a
uniform sense if the underlying RFDE is asymptotically stable. Such a result is by no
means obvious and not all approximation schemes have this property. For example, it is
shown in KAPPEL-SALAMON [12] that spline approximations for RFDEs can never have the
property of uniform stability. Nevertheless, the uniform stability result provides a
crucial step in the convergence proof of GIBSON (3] for the solutions of the algebraic
Riccati equation. Moreover, the structural matrix FN introduced in this paper allows a
factorization of the approximate Riccati operator in precisely the same manner as it is
shown in KAPPEL-SALAMON [(12] for the spline approximation scheme. Finally, it seems
likely that the uniform stability results of this paper have some implications for the

construction of finite dimensi nal compensators for RFDEs. This is a research problem for

future investigations.




6. APPENDIX

In this section we formulate and prove two general functional analytic result which

are needed frequently in section 4.

LEMMA 6.1 Let A be an arbitrary set and let X,Y,2 be Banach spaces. Moreover, let

x® e L(x,Y), e uy,z), T: e [{Y,Z2), ae A, k €N, be bounded, linear operators with

the properties
a
(1) ct{xx jJaenr, xex, Ixl < 1} CY jis compact
a a
(11) Ty = lim Tky for all y €Y uniformly in a € A.
K+

a_ a a_a
Then 'rkx tends to T K & [(X,2) 4in the uniform operator topology as k tends to

infinity and this convergence is uniform in a € A.

PROOF Note that for every ¢ > 0 there exist finitely many x4,..., %y e X and

a,,**,a @ A such that for every a €A and every x € X with Ixl < 1 there is a
o

je{1,...,n} such that X% - x jle < €. Hence the desired uniform convergence

result follows from the inequality

a a a
(L S %% < [iThr + ] - x ’le +mlx jxj - x jle. a

The next reasult is a quantitative estimate for the equivalence of Lp-stability and
exponential stability for strongly continuous semigroups. This equivalence has been
proved - for the case p = 2 - by several authors, see for example DATKO {5), CURTAIN-
PRITCHARD (4], PRZYLUSKI {16]. But none of these give the desired quantitative estimate
which is essential for the proof of uniform stability in theorem 4.9. Again in the case

P * 2 such a quantitative estimate can be found without proof in GIBSON (8]. We mention
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that some of the ideas in the proof of the theorem below are taken from PRZYLUSKI (8B,

proposition 9] and ZABCZYK (21, theorem 5.1).

THEOREM 6.2 Let S(t), t > 0, be a strongly continuous semigroup of bounded, linear

operators on a Banach space X satisfying the exponential bound

wt
|S(t)|L(x) < Me ,t >0, (6.1)

for some congtants M > 1, w > 0, Moreover, let 1 < p < = and suppose that there

exists a constant c¢ > 0 such that

[ 1s(eyxP ae < P1xi?, x e x. (6.2)
0

Then, for every

a > - (6.3)
pcpMp

there exists a Y = y(a,w,M,c,p) > ' such that W




then there exists a unique T > 0 sgatisfying

or equivalently

a cP"PGWPT
a = — log o eer
p T + Pue’®

The proof of theorem 6.2 ghows that in this case Y = y(a,w,M,c,p) > 1

y - [1_+ PuP pr]z/p

T1/pc

PROOF OF THEOREM 6.2

let T >0 be given and let us define

€ = €(T) = -_—_-_EL_ZT; » 0.
T + cPuP"P

Then it follows from (6.1) and (6.2) that

-
T oas(m *xeP
k=0
- 1 -
=1 7) 1s(eT)xIP ae
k=0 ° 0
- Y T
ctxt? + T [ asr-e)® as((x-1)m+e)xIP ae
T
k=1~ 0
1 L]
< 1xtP o 7 [ sup 1ste)tP] [ is(e)xtP ae
, 0
PP WPT
< [1 sl 1 P
T
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(6.5)

can ce chosen as

(6.6)

(6.7)




b = ¢ 1P,

w *1 L
I asm* P -
k=0 k=0
and hence

for every x € X. This implies that

o
150 x® - 1P < (1-¢) T as(m)*xaP
k=0

1s(m™a < [ ] 1s(m*aP) VP

k=0

< (1-e)™P[ T 1s(r)*xP]V/P

k=0

< (1-6)VP"1V/Ppy

for every x € X and every m € W. Now let ¢t =nT + T >0 and m€N and

0 < T <T. Then we conclude that

15(t)x1 < 1S(T)IS(T) ™ xl

) <m T eTVP (126)V Py
oy m 10q(1'€) M.(J-_c.l (% - 1)
EMe € pep e p i1x)
log(1-€)
] ot -1/ -1/p op,r £ (mT+7)
A =me e P (1-¢) e 1x1




where

1 cp 'mP epr

a = a(T) = = log =~———— < 0

and

Y

PT 'l'+cp Hpgwp'r

ot 1 ]1,9 _ [T+ cPuPoUWPT)2/P

= Y(T) = Me =
€(1-¢€) VP,

(compare (6.5) and (6.6)). Thus the statement of the theorem follows from the fact that

a(T) is strictly increasing for T > 0 and satisfies
1
lim a(T) = - . -
T+0 PyP
pc
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